n^2+5=16

Simple and best practice solution for n^2+5=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n^2+5=16 equation:



n^2+5=16
We move all terms to the left:
n^2+5-(16)=0
We add all the numbers together, and all the variables
n^2-11=0
a = 1; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·1·(-11)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{11}}{2*1}=\frac{0-2\sqrt{11}}{2} =-\frac{2\sqrt{11}}{2} =-\sqrt{11} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{11}}{2*1}=\frac{0+2\sqrt{11}}{2} =\frac{2\sqrt{11}}{2} =\sqrt{11} $

See similar equations:

| 6d-54=-12 | | 2k^2+1=183 | | 5(x+2)-3(x+4)=2x-2 | | 3x+4(x-5)=3(x-4) | | 20y+y2=0 | | 3(2n+1)=4(2n-5) | | 10n^2+1=721 | | .444+4x-4=3.1111+6x+1 | | 3x-4(2-3x)=5(x-3)-53 | | 11x-82=6x-7 | | X=-3,x=5 | | 121w^2-144=0 | | x=81/(-3) | | 11x/30=16 | | N/n+7=2/5 | | 6.66(6x-15)=45 | | 0.009*x=0.5 | | g^2-4g+4=0 | | x=-3*2+144 | | 2x/5+x=220 | | 2x/5+x=120 | | 6x/30+5x/30=16 | | 8-3y=2(4y+7)/5 | | 3v=15/17 | | 2a+7=-4a+7 | | x=-3*2+16 | | 2x/5+x=210 | | 2/3(6x-15)=45 | | 2x-28=-16 | | -2=-4(-7y+1)+5(8=2y) | | 3,18x+2,5=8,76 | | 3x+856;x=15 |

Equations solver categories